
ii Tec6hical Report
Fla- ESD-TR-87 k4

_______ Carnegie-Mellon University

I. SoftwareEngineering Institute

A Classification Schema for
Software Development Methods

D T lI Robert FirthI c~ kLECTERich Pethia
OCT 2 4Lauren Roberts0 ~OCT24Vicky Mosley

Tom Dolce
1 0 4November 1987

N

05

ro"" 0

_7

Technical Report
CMU/SEI-87-TR-41

ESD-TR-87-204
November 1987

A Classification Scheme for Software
Development Methods

Robert Fir h
Bill Wood

Rich Pethia
Lauren Roberts

-. •Vicky Mosley
"Tom Dolce

I i Real-Time Methodologies Project

I)__ .~......

For distribution to select SEI Affiliates only.
For further distribution guidelines, please contact the

Information Management division of the
Software Engir gring Institute.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in th's report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and Is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is eponsored by the U.S. Department of Defense.

This document is availab'a through the Defense Technical Information Center. DTtC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, ploase contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Infnrmation Services. For information on
ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce,
Springfield, VA 22161.

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office. DSEE is a trademark of Apollo
Computer, Inc. ISTAR is a trademark of Imperial Software Technology Ltd., London. PSL/PSA are trademarks of Meta
Systems. Rational is a trademark of Rational. Smalltalk-80 is a registered trademark of Xerox Corporation. TAGS is a
registered trademark of Teledyne Brown Engineering. UNIX is a registered trademark of Bell Laboratories. VMS is a
trademark of Digital Equipment Corporation.

Table of Contents

1. Introduction I

2. Context 3
2.1. Characteristics of Real-Time Systems 3
2.2. Conceptual Issues 4

3. Classification of Methods 7
3.1. Software Development Stages 7
3.2. Views of the System 7
3.3. Classification Scheme 8

4. Development Process 11
4.1. System Design Phases 11
4.2. Systems Engineering 11
4.3. Life-Cycle Issues 13
4.4. Development Paradigm 14
4.5. Management Issues 15
4.6. Audiences 16

5. Methods 19
5.1. Characteristics of Methods 19

5.1.1. Representational Forms of the Methods 19
5.1.2. Deriving the Representations 20
5.1.3. Development Activities 21
5.1.4. Examining the Representations 22

5.2. Historical Perspectives 23
5.3. Comparison and Classification of Methods 24

S6. Automated Support 27
6.1. Tool Support of Methods 27
6.2. Tool Consistency with Methods 28
6.3. Software Engineering Environment Issues 29

7. Using Methods 31
7.1. Analyzing Requirements 31
7.2. Deriving the Specification 32
7.,. Identifying the Components and Structure 33
7.4. Implementing the Design 33
7.5. Summary 34

8. Choosing Methods 35
8.1. The Etigineering Problem 35
8.2. Classifying Methods 37

CMU/SEI-87-TR-41 1

8.3. Selecting a Method 39

Appendix A. Key Methods - Acronym Descriptions and References 41

CMU/SEI-87-TR-41

I
/

A Classification Scheme for Software Development
MethodO

Abstract. Software development methods are used to assist with the process of de-
signing software for real-time systems. Many such methods have come into practice
over the last decade, and new methods are emerging. These new methods are more
powerful than the old ones, especially with regard to real-time aspects of the software.
This report describes a classification scheme for software development methods, in-
cludes descriptions of the major characteristics of such methods, and contains some
words of advice on choosing and applying such methods.

1. Introduction
A major challenge in any engineering endeavor is taking a poorly structured, ambiguous, incon-

sistent, incomplete, and oversimplified requirements specification and turning it into a well-

structured design. It is especially difficult in software engineering, a new field with few standards

and procedures to act as guidelines for designers.

This report is one of a series concerning the classification, assessment, and evaluation of soft-
ware development methods and tools. Its purpose is to describe a classification scheme for soft-
ware development methods and provide relevant background material about these methods. In a

second report, the assessment criteria for software development methods are developed, and a

third report describes both a classification scheme for tools and evaluation criteria for selecting
appropriate ones. Future reports will apply the classification scheme and assessment criteria to

particular method, and tools. (r.) (-

This report is directed to three distinct audiences: those who write software requirements, those
who design and implement software systems, and those who build tools to automate develop-

ment methods. The people whom we expect to derive the most from this report, however, are
those designers and implementors whose task is to choose methods and supporting tools for use
in a specific application domain.

Since one of the stated goals of the Real-Time Methodologies Project is to look at methods and

tools associated with real-time systems, this report begins with a context chapter, which first
describes some Important characteristics of real-time systems and then goes on to describe
some of the conceptual issues that motivated us in this endeavor. Chapter 3 discusses the
classification scheme for software development methods. Chapter 4 describes some of the is-
sues In the development process, Chapter 5 provides a background on methods and their char-

acteristics, and Chapter 6 discusses some of the issues relating to automated support of the

methods. Finally, the last two chapters describe how to choose and apply methods.

CMU/SEI-87-TR-41

2 CMU/SEI-87-TR-41

2. Context

When people use the term software design method, they often have a particular aspect of the
total design in mind. Our definition of this term is a broad one: start with a rather sparse set of
requirements gathered into a requirement specification and derive a validated implementation of
these requirements. The emphasis, however, is on the development of the target software, with
minor references to the additional software needed for successful testing. installation, trouble-
shooting, and quality assurance of the target software. One of the drawbacks of discussing soft-
ware development as an abstract activity is that it tends to give a mechanistic view of the design
process, while most practitioners would emphasize the contribution of individual designers
[Brooks 87]. We agree with this position, and we reference the ideas of such practitioners to

balance the more simplistic parts of this study.

2.1. Characteristics of Real-Time Systems

Before discussing methods of design, it seems judicious first to lay out some characteristics of
real-time systems. This is not meant to be a complete list of such characteristics, but rather a
short list of the major aspects that must be considered. Uncontroversial characteristics such as
maintainability and quality, which apply to all systems, are not listed.

1. The major characteristic of real-time systems is that many different, interacting
functions have severe performance requirements, especially in response time to
events. Other functions monitor and control continuous processes, have strict
periodicity requirements, and need specified computational resources within strict
time intervals. These requirements are exacerbated by the need to respond to sud-
den "bursts" of events on top of the regular processing capability.

2. Real-time systems interact with various sensors and emitters, which transmit to
the computer system signals representing the state of the environment and convey
control signals to effect the environment. These devices may input analog measure-
ments (temperature, speed, flow-rate), output analog values (setpoints), input digital
measurements (on/off status of devices), or output digital signals (open/close
switches).

3. Real-time systems are almost always resource constrained. In some cases the
systems are CPU bound; in others main memory allocation is the problem; and in
yet others the bottleneck occurs In communications between distributed compo-
nents, access to shared data, or access to secondary storage. Unfortunately, con-
cern with one resource (such as CPU) often leads to an Implementation in which
another resource (such as memory) becomes a severe bottleneck, necessitating
large redesign efforts.

4. Real-time systems are event driven, and large parts of their behavior can be de-
scribed as responses to events in the environment. Capturing the interaction of the
system with the environment is itself an important aspect of the design. In real-time
systems, the behavior of these responses to different events must be synchronized.

5. Real-time systems often control and monitor systems that are continuously in oper-
ation and cannot afford downtime due to failure conditions; hence, fault tolerance
is required. This has Important software design consequences for recovery of func-
tions without loss of time or critical information.

6. Some real-time systems must be in operation continually. Software may have to be

CMU/SEI-87-TR4 3

installed on a standby system, with an enforced swltchover of control to the
standby when the change has been installed. The system which was previously in
control can then be upgraded and placed into operation in a backup mode.

7. Real-time systems are difficult to debug in the target environment because the
delivered system may have residual flaws that have not been detected. Often the
direct symptoms from these flas are too obtuse to trace and correct. Henca the
software design should include some tailorable data extraction capability to yield
sufficient secondary symptoms to isolate and correct flaws.

8. Because real-time systems are usually installed into an operating environment dif-
ferent from the development environment, a set of problems can arise during
Installation. The software design has to allow for easy installation of the system
and for procedures to validate the operational capability of the installed system.

9. Software is such a major part of the current generation of real-time systems that the
interactions between the software, hardware, and the human operator need to be
thoroughly inspected for failure modes that carl lead to hazardous operating con-
ditions. Thus, some care must be taken for software safety conditions [Leveson
83].

10. Department of Defense (DoD) real-time systems operate in an evolving
environment. Software changes are necessitated by changes to the threat environ-
ment, to operational procedures, and to hardware. The design method should in-
clude an evaluation of the most likely ways the environment will change and also
encourage a software partitioning strategy which can best accommodate such
changes [Pamas 861.

There is a wide range of real-time systems, varying from firmware in a small chip with limited
input/output and no persistent data, to systems supporting all battlefleet operations. Some are
control-flow oriented, others have a large number of varied persistent objects, and still others are
dataflow oriented. In very large systems, portions of the system will contain components with all
of the above characteristics. There is probably no single method which is "the best" for the com-
plete range of real-time systems.

2.2. Conceptual Issues

In deriving a classification scheme for software design methods, we addressed some of the con-
ceptual issues described below.

1. How well does the method expose the flaws In the requirements and help the desig-
ner create a consistent and correct specification? How strictly can the method
validate the specified functionality and behavior at the early stages of represen-
tation? How does the method handle the performance and resource constraints
specified?

2. What is the relationship between the life-cycle models of software design, the differ-
ent stages of representations of the software, and the activities performed by the
designer?

3. What is the Interaction between different representations of the software, and how
can we use the higher-level representation to help derive the lower-level one? If
there Is minimal carry-over between levels, is it worthwhile going into great detail at
the higher level?

CMU/SEI-87-TR-41

I

4. At what points in the design process are human intelligence, judgment, and deci-
sion making most important, and why? What heuristics do good designers use
when developing a design?

5. How can a design at one level be communicated to audiences with different roles to
play in the development? The design is usually produced by a small group of
people and used by a much larger audience; therefore, there should be a "reader-
oriented" representation. What aspects of design are particularly difficult to deal
with?

6. How can we represent the design so that changes defined at a high level can be
easily incorporated through all levels and eventually be Incorporated into the target
system all in a disciplined, uncorrmplicated manner?

7. How can the design method best build upon previous work done by others, includ-
ing reuse and salvaging of parts at all stages of representation?

8. Where do tools play their most useful role?

The intent of this project is to look at well-established and supported design methods. There are
many such methods currently in use, and, in some cases, there are many commercial tool sets
available that automate some aspects of a single method (for example, structured analysis).
Some vendors are also extending the capability of the original methods in their automated tool
sets (for example, incorporating state transition diagrams with structured analysis). However,
there is also a significant body of research that examines certain aspects of software design, and
we cannot help but be influenced by this research, especially in the area of developing criteria for
good methods. The most relevant research areas are those of formal methods and artificial intelli-
gence. The work on formal methods is oriented toward specification of the design using math-
ematical representations such as CSP [Hoare 85], [Hayes 87], VDM [Bjorner 82], or specification
languages with an underlying theory, such as Larch [Guttag 85]. The work on artificial intelli-
gence is oriented toward automatic programming [Balzer 85], wide-spectrum languages [Smith
85], and transformations [Partsch 83]. While these and other efforts are undoubtedly important
research developments, evaluating their capabilities is not the major concern of this project.

CMU/SEt-87-TR-41 5

6 ~CMUJ/SEI-87-TR41

3. Classification of Methods
In this chapter, we discuss classification of design methods. We Introduce the classification
scheme here to lend a focus to the remainder of the report and to explain why certain issues are
given only cursory attention. We first Introduce the two Independent axes of the classification.
Then we discuss the classification scheme. More detailed historical perspectives of methods are
included in later chapters.

3.1. Software Development Stages
The development stages are listed below. Each development stage is characterized by the as-
pects of the system that the stage represents and the way those aspects are represented.

The requirement is a description of what the end-user audiences view as their needs and is
often a rather eclectic description. It usually covers the needs of each audience in the end-user
community in an uneven manner, with some aspects (such as ease of installation) often over-
looked. It often describes some functions (such as a scheduling mechanism) in very general
terms, but others (such as a communications protocol), extremely thoroughly. Often, important
requirements are not addressed in the requirements specification, and they need to be exposed
and handled as they arise. The earlier these issues are addressed and resolved, the better the
prospect of delivering a high-quality product within budget and schedule.

1. The first step is to take the ambiguous, incomplete, and inconsistent requirement
and turn it into an almost flawless specification. The specification describes what
the software is to do and the constraints to be imposed on the designers. Although
the design process is not the primary consideration In this paper, it is worthwhile
noting that production of the specification is not limited to a front-end activity, but
will proceed throughout the life cycle of the system.

2. The design representation describes how the system is structured to satisfy the
specification. It describes the system in a large-grained manner and defines the
breakup of the system into major tasks. It describes persistent data objects and
their access mechanisms, the important abstract data types and their encapsulation
in the tasks, and the message structures between the tasks. There must also be
some consideration for allocating resources and satisfying the performance require-
ments.

3. The final development stage Is Implementation with source code, object code,
resource usage, and initialized data structures. This is the level at which algorithms
are developed and represented explicitly.

3.2. Views of the System
Various vlewi of the system are needed to describe Its intended and actual operation [Harel 86).
These views are relevant at each stage of the system development and are enumerated below.

1. The functional view shows the system as a set of entities performing relevant
tasks. This view Includes a description of the task performed by each entity and the
Interaction of the entity with other entities and w!th the environment. The functional
view Is often the starting point for the design process, since It is commonly the way
the system is decomposed into smaller and simpler parts.

CMU/SEI-87-TR-41 7

2. The structural view shows how the system Is put together: the components, the
interfaces, and the flow between them. This view also shows the environment and
its interfaces, and information flows between It and the system. Ideally, the struc-
tural view should be an elaboration of the functional view. Each entity in the latter
view is decomposed into a set of primitive software components that can be imple-
mented separately and then combined to build the entity. The design process,
therefore, generally converts a functional view into a structural view. However, the
structure of a system is influenced by resource constraints which prevent the use of
arbitrarily many or arbitrarily large components. The structure is also influenced by
certain implementation constraints that require the use of specific types of compo-
nent (e.g., Mil-Std-1 750a processors) or require that components be connected in a
specific manner (e.g., by Mil-Std-1553 buses). The structural view should include a
definition of the number and dimensions of entities to allow for resource estimates.

3. The behavioral view shows the way the system will respond to specific inputs:
what states it will adopt, what outputs it will produce, what boundary conditions exist
on the validity of inputs and states. This includes a description of the environment
that produces the inputs and consumes the outputs. It also includes constraints on
performance that are imposed by the environment and function of the system.
Real-time systems. especially, have performance requirements as an essential part
of their correct behý r. The behavioral view should include a definition of the
expected workload arid the required responses of the system to this workload.

3.3. Classification Scheme

The classification scheme shown in Table 3-1 uses the system stages (specification, des jn,

implementation) on one axis, and the views of the system (behavioral, functional, and structural)

along the other axis. The requirements analysis stage is not included, since it is informal, and we

believe there is little to be gained by including it. A method will be classified by marking the

appropriate box or boxes. A later report will further detail this classification scheme.

8 CMU/SEI-87-TR-41

.Now"

Functional Specification Design Implementation

Functional

Views
of the Structural

System ,,_,

Behavioral

Table 3-1: Stages of Development

I
CMU/SEI-87-TR-41 9

10 CMU/SEI-87-TR-41

I
I

4. Development Preweess

To describe development methods, we must also describe some related development process
leaues. This chapter outlines the issues we believe are important in the development process and
includes discussions on systems engineering, system and software life cycles, development
paradigms, and management.

4.1. System Desigi' Phases
There are three phases in the development of large military systems as described in DOD-STD
2167 - concept exploration, demonstration and validation, and full-scale development. A short
summary o' 3ach is given below.

1. The concept exploration phase (CE) is a study of the technical feasibility of the
system in which each contributing technology (and science) is examined to deter-
mine how it is applicable to the system being considered and to advance the tech-
nologies as necessary to make the system feasible.

2. During the demonstration and validation phase (DEMVAL), the applicable tech-
nologies a-e integrated in a loosely coupled manner to demonstrate the feasibility of
the system. The demonstration is not necessarily a full-scale model, but may dem-
onstrate that critical parts of the system work separately and that the technology to
integrate them exists.

3. During the full-scale development phase (FSD), design systems are built by build-
ing upon the appropriate technologies from the DEMVAL phase.

The software developers should use a method at each phase appropriate for that phase. For
example, software developed for the concept exploration (CE) phase will not have to be sup-
ported over an extended period of time to the same extent as software in the FSD phase. Hence,
a development technique lacking a maintenance emphasis may be appropriate for this phase, t",t
is totally inappropriate for the FSD phase, in which maintenance is a primary concern.

Since the phases also have very different objectives and may be widely separated in time, it is
unlikely that there is much direct carryover of software artifacts between phases, though one
should not discard useful DEMVAL software which is applicable to FSD. This is especially true of
software environments and tools which have been developed during DEMVAL and can be used
directly in the development of FSD software. It is less likely that application software produced for
the DEMVAL phase can be used directly in the FSD phase.

4.2. Systems Engineering
The field of systems engineering involves many topics, including design, installation, and opera-
tional aspects of a system, and the Integration of different artifacts (hardware, operational soft-
ware, software tools, test procedures, operational procedures, and maintenance procedures).
The systems engineer has to understand diverse technologies and Integrate these technologies
Into a well-designed system to meet end-users' expectations. Systems engineering is usually
performed by a team of people with expertise in a sufficient number of the relevant areas to

CMU/SEI-87-TR-41 11

consider the requirements and constraints associated with each technology of interest. They are
suiported by experts with more specialized knowledge In each technology area. A list of typical
technology areas Is given below.

* sensor technology
* human-machine interface
* computer processors and peripherals

* communications

* applications domains

e fault tolerance
9 programming languages

9 operating systems

* software engineering

One of the most difficult problems facing the systems engir .;er is that each technology is advanc-
ing at its own pace (while still being somewhat dependent on the other technologies), yet the
systems engineer has to choose the stage of each technology at which th~ey all can be success-
fully integrated. Thus the risk of having out-of-date technologies is balanced against that of not
being able to produce the system on time and within budget. (Of course the software engineer
faces the same problem, wi~h a somewhat more restricted range of technologies.)

The systems engineer is often wurking from crude estimates of both -ihe workload and resource
requirements for each functional component of the system. These crude estimates are made from
past experience and are greatly aided by reusing or salvaging both hardware and software (either
the artifacts or the ideas). Of course the archliecture that emerges is the result of balancing costs
and risks. The chosen architeclure will be perceived as one with a low risk of bottlenecks and a
high potential for satisfying the functionality wiaiin the prescribed budget and schedule, while not
gold-plating the solution.

One of the traditional aspects of the systems design is to specify what functions will be provided
by hardware and what funclions by software, as well as how the software modules will be al-
located to the hardware componenrts for execution. Systems engineering accounts for fault-
tolerance in the hardware, describing how the system operation is affected by failure of hardware
components. The systems design also defines how the communications between the software
executing on different processors will be achieved. Systems engineering must, therefore, be
based on good estimates of the software resource requiroments nh order to assign software to
hairdware components and to make sure that the capacity of the communications channels is
sufficient to handle the data arid signal traffic. This has always been a difficult task, and often the
resources allocated to some software functions were insufficient, or the ;hannel bandwidth was
inadequate, or the storage c~apability of the media was inadequate, and so on. A few of the major
drawbacks of such a design philosophy are listed below.

*The software design often reflects the hardware design, and small hardware
changes can cause significant software changes.

12 CMU/SEI-87-TR-41

1

If bottlenecks arise, a reallocation of the software components to the hardware com-
ponents is often necessary, hence changing the software design, which is dependent
on the hardware configuration. An alternative solution is to include hardware with
more power. but this often leads to acquiring new operating systems, necessitating a
software redesign.

These problems with this approach to system engineering are inherent in emerging architectures
such as PAVE PILLAR [PavePillar 851, which consists of both loosely coupled and tightly coupled
processor clusters, with each cluster containing special-purpose processors, general-purpose
processors, data communications channels, and signaling communications channels. The desig-
ner has more flexibility to assign software functions to processors, but the assignment is difficult
to accomplish, and is often performed in the later stages of design and implementation.

4.3. Life-Cycle Issues

The software life cycle within the system full-scale development (FSD) phase involves managing
and controlling the software acquisition through all phases from requirements analysis to deploy-
ment to subsequent maintenance. DOD-STD 2167 describes how thi'; is to be done, and clarifies
In iis foreword, "The intent of the standard is to permit any systematic, well-docunmented, proven
software development methodolopy. As such, this standard should be selectively applied and
tailored to fit the unique characteristics of each software acquisition program, and the particular
life-cycle phase in which it occurs." The life-cycle activities are well documented in the standard
and in other reports and will not be described In detail here. Unfortunately, some overloading of
the term phase is necessary in this report since both the system development (EC, DEMVAL,
FSD) and the software development portion of FSD use the word phase. For the remainder of
the report, phase can be taken to mean the phase of the 3oftware life cycle within FSD. We will
specifically use "system phase" as necessary.

DOD-STD 2167 also details how the FSD is to proceed. The standard suggests that the systems
design use functional decomposition to separate the system into software and hardware configu-
ration items as a first step during the software requirements analysis phase of FSD. This devel-

opment paradigm has significant problems, some of which are detailed in [Firesmith 87], and it is
for many of those reasons that we chose to take an approach to software development methods
independent of life cycle. Further reasons are listed below.

o We are considering development methods for software for real-time systems, and
the emerging technology is that of configurations of both loosely coupled and tightly
coupled processor clusters. Breaking down the software to hardware assignments at
an early stage for this architecture takes away the software designer's flexibility to
assign software to hardware in the later stages of the design cycle. The longer the
designer can postpone such physical allocation decisions, the greater the chance of
avoiding bottlenecks.

o There is a perceived neod to describe the operation of the system, as opposed to the
software components. Many specification techniques do not draw rigorous bound-
aries between hardware, software, and operational requirements at an early stage
but concentrate on describing what the system must do.

CMU/SEI-87-TR-41

' _i

We have chosen to distinguish between development stages and life-cycle phases, since it
makes it easier to understand that the maintenance phase in the life cycle causes changes to the
representations at all the various stages in the development process.

There is an ongoing evolution of software life-cycle models. The most commonly used model is
the waterfall model, while other models such as the spiral model are currently being proposed
to overcome some of the deficiencies of the waterfall model. The waterfall model [Royce 70] is
based on the principle of completing each design stage before going to the next stage, although it
does allow for feedback to corrc 1 flaws in previous stages as they are uncovered in later stages.
The major problem with this apf z)ach is that its uniformity does not allow the designer to concen-
trate on high-risk issues at a leý_l low enough to resolve them. The spiral model [Boehm 86] is
an attempt to improve on the waterfall model by allowing designers to concentrate on tackling the
design by narrowing it to the remaining high-risk issues, assuming that these issues can be
resolved at a lower level, and then elaborating on the solution to incorporate more of the function-
ality. The spiral model continually spirals through certain activities in this fashion until the design
is complete.

4.4. Development Paradigm

The previous sections made no mention of how one derives representations at each stage and
how one moves from stage to stage. This process of going from stage to stage is one of the key
issues in the design process and is also quite controversial. We give a brief description of each of
the competing pai adigms that have been used over ,he years.

The bottom-up paradigm is often used in two slightl. different ways:

1. To denote that the designer leaps from requirements to implementation descriptions
of how to solve problems, skipping the specification portion, and dealing only in a
cursory manner with the design stage.

2. To denote that the designer identifies the low-level functions first, designs and
implements them, and then proceeds to design and implement the next higher
level, and so on.

The problem with either interpretation is that some important design considerations are em-
bedded in the code, and if these are incorrect, they lie undetected until they are revealed during
system integration.

The top-down design paradigm usually means that designers start with a single representation of
the system, and then partition the system by some scheme (ustualiy functional), describing the

Interfaces between the partitions as they go. This paradigm emphaoizes the structural and func-
tiona' viewpoints as opposed to the behavioral and leads to designs where the behavioral aspects
are buried in the code.

In the middle-out paradigm, designers reject both top-down and bottom-up approaches and
proceed by choosing some aspect of the system, specifying it thoroughly, perhaps making a
first-pass design to determine its feasibility, arid then concerning themselves with designing de-

14 CMU/SEI-87-TR-41

I

tails of interfaces to the rest of the system. This paradigm has an added advantage: the designer
has an early understanding of the performance, resource, and other problems associated with the
design.

The rapid prototyping paradigm describes the building of an inexpensive prototype of portions
of the system to validate the requirements before committing to an expensive full-scale produc-
tion. This seems to be a good way of approaching both the high-risk portions of the system and
the specification of user dialogs.

The reuse paradigm is currently the basis of extensive investigations. People reuse software in
two principal ways:

1. Mathematical and statistical library functions are often reused without giving the
subject much thought.

2. People build a new system by salvaging what they can from a known and similar
previous effort. The closer the new system Is to the previous effort, the more likely
people are to reuse its worthwhile products.

The above, however, are limited examples of reuse, which is now seen as a major factor in
increasing both the productivity of software developers and the quality of the software product.

An idealized paradigm is one in which the designers express all problems completely at the
specification stage. They then use some well-defined procedures and heuristics, supported by
powerful tools and their own judgment, to derive a high-level design to satisfy the specified func-
tionality and behavior within the performance and resource constraints. Conventional wisdom
has it that this is done in an iterative manner. Prototyping of some algorithms is necessary to

obtain measurements for predicting operational performance and resource usage; recording the
design in a top-down manner is desirable from the standpoint of reviewers and maintainers.

4.5. Management Issues

Software engineers produce a product to meet a set of users' needs and to be used by people
other than the developers. As for any other such product, the definition, daign, production, and
maintenance require management of both the people developing the product and the process
being used. Management issues are those covering costs, schedules, personnel assignme;t1b,
productivity, and coordination and communication across organizational boundaries. The focus

of this section is directed at the overlap of methods and management concerns.

Methods should support a planning process that begins with the development of a definition of
the system to be built, allows for the early examination of a number of possible designs, and
results In a detailed statement of what will be produced, when, how, and at what cost. To support
this process, methods should lead to artifacts that can be understood and reviewed by the appro-
priate audiences. The methods should promote rapid development of high-level design represen-

tations that can be analyzed against a set of constraints, compared, and judged to determine the
most feasible design approach. The methods should prescribe the generation of a sufficient
number of intermediate products that are produced at a reasonable enough frequency to support

CMU/SEI-87-TR-41 15

the creation of detailed project plans. Schedules and budgets presented in the plans should be
based on these intermediate products.

Methods must integrate with the process of organizing and staffing a development project.
Methods prescribe a way and sequence of doing things - what activities should be performed in
what order. Requirements analysis and design methods, for example, often lead to an early
partitioning [see Section 5.1.3] of a problem into manageable pieces. Projects should be organ-
ized so that they parallel the partitioning prescribed by the selected methods. Interrelationships
between subsystems can be used t, identify interrelationships between working groups. Partic-
ular characteristics of individual subsystems dictate that individuals with different combinations of
skills may be required to further develop each subsystem. Methods are not substitutes for
individuals' skills but can help identify which skills must be developed within, or acquired by, a
particular organization

Methods should also support the process of tracking project progress and controlling ongoing
activities. The methods should prescribe, for each of the intermediate products, a set of rules,
metrics, or guidelines that can be used to judge the completeness and quality of the intermediate
products. Review teams, using these rules in conjunction with their own knowledge, should be
able to judge the status of each intermediate product. These judgments, along with an under-
standing of the relationship between intermediate products and the overall project, help assess
project status, pinpoint areas of difficulty, assess risk, and focus on problem-correcting activities.
This support is important in all areas of development, but plays an especially important role when
the methods' intermediate products are deliverables in a contractual sense.

Finally, methods and management can be integrated to develop an understanding of the engi-
neering process within a particular organization and help direct future activities. Use of methods
on projects, including the activities of gathering and analyzing data on the use of the methods,
allows an organization to understand its strengths and weaknesses. This information can help
identiiy the key areas where skill building and focused management activities can have a large
payoff.

4.6. Audiences

The artifacts associated with software development have many audiences, each with its own
point of view and expertise. This means that, in principle, there ought to be various views of the
representations available for perusal by each specialized audience.

The specification of what people do can be divided into those who actively create the represen-

tations, and those who examine the representations, with the recognition that some people do
both, or perform different roles at different stages. The major audiences are outlined below.

1. End-users write the requirements for the system, and will install, operate, and
maintain the system after it is delivered.

2. Specification engineers write the specifications from the requirements, resolving
ambiguities, removing inconsisiencies, and making sure that the specification is
complete. They should specify what is to be done, not how it is to be done, although
in some areas the constraints need to detail the implementation.

16 CMU/SEI-87-TR-41

I

3. Software designers describe how the software is to be constructed to satisfy the
specifications. This Involves making optimization decisions on the best way to
prcceed given the constraints imposed in the specification. Examples of such con-
straints are performance requirements, resources available, and fault-tolerance ca-
pabilities. These constraints often influence the design as much as the functionality
and behavior of the system.

4. Algorithm developers have specialized knowledge of a particular engineering dis-
cipline.

5. Implementors take the designed products and pro.uc,:• implemantations of these

designs.

6. Quality assurance people make sure that the produ:cts do what they are supposed
to do. They deal with the quality of the produicts and ways of managing and testing
the product.

7. Managers are concerned with providing leadership roles, with controlling the
budgets and schedules related to the project, ensuring that problems are recog-
nized early and resolved, and dealing with the various personnel assignments and
problemTs.

CMU/SEI-87-TR-41 17

18 CMU/S'E -87-TýR41

5. Methods

In general, a method is "a systematic procedure, technique, or mode of inquiry employed by or
proper to a particular discipline or art" (Webster). When applied specifically to software engi-

neering, It could be defined as a systematic approach to providing a software solution. The

method should, ideally, cover all aspects of the problem and, in the context of software engi-
neering, should lead from an initial (imperfect) set of requirements to a satisfactory implemen-
tation, passing systematically through the Intermediate stages.

5.1. Characteristics of Methods

At all stages in the development process, a representation of the system must be created. It is
important to understand how the method contributes to this process. The method of designing a

system at any stage can be considered from three points of view, namely:

1. What is the form of representation of the artifacts?

2. How are these representations derived?

3. How are these representations examined?

Each of these considerations is discussed in the following sections. The descriptions are not
given in detail, but sufficient information is supplied to give the flavor of the approach. The char-

acteristics will be elaborated in a further report describing how to select a method.

5.1.1. Representational Forms of the Methods
Chapter 3 described the pioposed classification scheme. The most important characteristics of
the representations depend on the stage and view of that representation. Some common charac-

teristics are listed below.

1. Graphical representations are much easier to comprehend and are used to convey
the understanding of the specification, design, and implementation. They also as-
sist in developing a design and are most useful if they are part of the design and not
just explanatory. Graphical representations prevent developers from dealing with
detail prematurely and allow reviewers to perceive patterns more easily. Several
problems detract from this comprehension of graphical representations:

* clutter arising from representing too much information

* complexity of the connections between objects

e difficulty of maintaining connections as changes arise

The alternative textual representation has the advantage of being more detailed
and expressive. In general, a mixture of graphical and textual information is desir-
able. The textual descriptions provide completeness, and the graphical represen-
te.tions provide understanding of the structures.

2. The degree of formality of a representation is also important. The more formal the
representation, the easier it is to reason about the operation and decide on com-
pleteness and consistency. However, a formal representation can obscure the "big
picture" by Its concern for specifying details. The formal systems are also more
difficult to learn.

CMU/SEI-87-TR-41 19

3. A large system has to be partitioned into subsystems, with the interfaces between
th. subsystems well defined. The same partitioning scheme should be applicable to
derive a multi-layered representation.

5.1.2. Deriving the Representations
A method must not only describe the representations produced but must give some guidelines for
deriving them.

1. Designers tend to use past experience as their guideline for approaching a prob-
lem. They pick and choose from their experience and try to apply to the current
problem their knowledge of "what works under which circumstances." Some ex-
amples of the activities they perform are summarized below.

! !f possible, they will reuse components from another system, since this is
the most productive path to take. They will only do so, however, if they have
access to these components, confidence in their quality, and accurate specifi-
cations of their functionality and cost.

* If they cannot reuse components directly, they may salvage these compo-
nents, picking them up and changing them to apply to their particular prob-
lem.

* Sometimes they cannot reuse or salvage components, but can still reuse the
design principles or concepts which were applied previously by reorienting
them to the problems of the design at hand.

e Sometimes they can peruse a previous design and determine why it is not
appropriate for the current system design. This often leads them to develop
characterizations for the new problem.

2. Most experienced designers have an "issues list," either on paper or in their minds,
when they approach a problem. This list contains important issues that are often
overlooked in the design of large systems. Their critique of a dlsign (their own and
others) is often based on their consideration of one or more of these issues. Ex-
amples of such issues are:

* Have th, fail'Jre conditions and recovery characteristics been considered
adequately?

* Have the performance considerations been adequately expressed?

* Have maintainability considerations been covered?

3. The method mujst contain clear concepts and the abstractions necessary to de-
scribe theso concepts. This is especially true at the high-level design stage. For
example, tie specification may detail many related but different objects with similar
functionality and behavior. It is the designers' responsibility to consider these as
specializations of some well-defined abstraction, since it is usually easier to deal
with as few concepts as possible at the design level.

4. Design is an Incremental activity during which the designer creates or assembles
parts of the system, examines the quality of the artifacts produced, and Iteratively
changes the parts to add more functionality, improve the performance, improve the
interfaces to other parts, etc.

5. The transformation of artifacts from one stage of representation to another is ex-
tremely Important. A separate section on transformations is included later.

6. The representations must be able to evolve over time, since software evolves in

20 CMU/SEI-87-TR-41

response to changing hardware, operational requirements, and added functionality.
Evolution of software generally retains as much of the original as possible, extend-
ing existing representations rather than developing innovative approaches, and
leaving some redundant information which may become useful later.

5.1.3. Development Activities
During the development process, the design, usually in a state of transition, is inconsistent, In-
complete, and ambiguous; even its feasibility may be uncertain. The whole purpose of a design
method is to assist the developers in driving the design toward a consistent, complete, and un-
ambiguous representation that is feasibla at the physical level. Design usually progresses by a
series of activities. These activities are referenced throughout this report and are listed below for
the reader's convenience.

1. Partitioning is the activity of breaking a large problem into a set of smaller prob-
lems while defining the interfaces in a clear enough manner to maintain control over
the breakup.

2. Narrowing occurs when designers cannot address the complete partition initially.
They ignore certain aspects of the specification unti! they have a design for a por-
tion of the problem. Once they have the pa;tlal design, they use it as the basis for
reintroducing the initially ignored aspects.

3. Elaboration occurs when designers add more functionality to the partial design. If,
for example, designers ignored recovery issues on the first pass of a design, they
would be elaborating on the design when they finally include the recovery require-
ments. Elaboration occurs at a new design layer and may cause changes to de-
pendent layers already created in the original design.

4. Refinement is the process of including more detail in the design. For example,
expanding a node in a data flow diagram is a process of refinement. This process
can be suustantially aided by using an already existing design to produce a for-
matted template including all currently available information.. Refinement is the way
that the designer usually adds new layers to the representation at the same stage.

5. Generalization and specialization are dual activities. Generalization takes many
object types with similar characteristics and forms a generalization containing all of
the common attributes, while leaving the specialized attributes as characteristics of
the original object types. Specialization starts with a single object type and derives
different object types. These are often associated with the so-called "is-a" type
lattice structure, and are more powerful if the specialized objects can have
exceptions. (For example, a penguin is-a bird that cannot fly.) These activities
allow designers to describe objects and the behavior of operations involving those
objects at the appropriate layer of abstraction.

6. Pruning Is the process of removing functionality from the product being designed.
This may be done if the design Is becoming too elaborate, If performance require-
ments cannot be met, or if the overall project appears to be infeasible.

7. Transformation is the process of taking a design representation at one stage and
transforming it Into the representation at the next stage, for example, transforming a
set of data flow diagrams into a set of executable processes and modules. In many
cases, transformation cannot be done automatically but requires some additional
activities by the designers.

8. ComposItion occurs when fragments with well-known attributes are synthesized to
perform a function that can be represented at a higher stage, Composition involves

CMU/SEI-87-TR-41 21

customizing an assembly of components. This is extremely Important, since It
forces designers to reuse objects with well-defined properties and to salvage and
change objects that almost satisfy the requirements. The objective is to improve
both productivity of the design and robustness of the assembly. This requires the
the designer be aware of objects at a lowar level of representation in order to com-
pose them into a superior level.

9. Examination describes the ways of determining the validity of the design, and it is
a generalization of the specific activities of review, Inspection, static analysis,
dynamic testing, and rapid prototype building. This includes analysis of represen-
tations at the same stages and at different stages.

10. Enhancement is the activity of making changes to an existing design to change its
functionality, Improve its performance, etc. Enhancing a design is an aggregation of
the other activities.

5.1.4. Examining the Representations
The usefulness of a method is heavily dependent on the ways available to examine the represen-
tations for consistency, completeness, accuracy, and all other desirable characteristics. The
sooner problems are detected, the more cheaply they can be fixed.

1. We can use formal proofs to verify a system completely, but this method is not a
panacea since it ;s a difficult process, understood only by the initiated, and unlikely
to be accepted by the end user without some other representations. Using formal
proofs is not only the domain of the well trained, but it is also difficult and time-
consuming. As engineers, we should expect to derive some heuristics from the
formal techniques and apply these in practice.

2. There are many ways of analyzing the different forms of representation for com-
pleteness, consistency, complexity, and coherency. These analytic techniques
have three basic variations:

* analysis of the same representational forms at the same stage (though
across many levels and partitions)

e analysis across different representational forms at the same stage

* analysis across different stages and different representational forms

It is clear that methods supporting powerful analytic capabilities of all the abovo
categories are preferred over methods with less substantial capabilities.

3. The ability to animate the representational form is considerably important, since it
prcvides immediate responses to the "what if" questions concerning the response
to specified operational conditions and allows the design to be improved inter-
ictively.

4. The ability to execute is, of course, taken for granted once code has been gener-
ated for the final system, and all testing is predicated on the execution of the coded
system in its final environment. One of the major problems is that specification flaws
which are detected in this manner can cause significant redesign and adversely
affect the delivery schedule and budget for the system. For this reason, there have
been attempts to create executable specifications such as PAISLey (Zave 86). An
alternative method Is to produce executable rapid prototypes of high-risk keystone
portions of the system.

5. The examinations should be Incremental to allow the designor to examine portions
on a stand-alone basis.

22 CMU/SEI-87-TR-41

6. The ability to determine the quality of software using some predefined metrics is
extremely desirable. The metrics used should be sufficiently powerful to allow the
designer to select between alternative designs, and sufficiently simple to do so at a
high level of abstraction.

5.2. Historical Perspectives

The purpose of this section is to give a historical perspective of specification and design methods
without describing details of individual methods. All of the methods referenced are listed in Ap-

pendix A for convenience and are referred to below only by acronym.

The development and evolution of methods for specification and design are interwoven with the

changes to related technologies that have occurred over the same time period. To give a
chronological description of these developments is an imposing task. We have chosen just to

describe the major influences.

i. The initial motivations for developing specification and design methods were both
administrative and technical. From an administrative point of view, the methods
broke the systems into individual pieces at different phases, stages, or levels. Es-
timates of various types could then be made about the pieces; budgets and
schedules could be generated, monitored, and maintained. From a technical point
of view, the methods curbed a tendency to go directly from requirements to coding
by introducing more rigorous specification and high-level design mechanisms. One
of the problems with the initial methods was that products were often deficient with
respect to some technical aspect that was not well expressed by the method, for
example, performance was unacceptable, or there were insufficient machine
resources to support operation of the system during integration, or the user-
interfaces were unwieldy. Such deficiencies often necessitated costly redesign,
causing schedule and budget overruns. There has been a tendency recently to
restore this balance by attemp!ing to include more technical aspects into the meth-
ods while still improving the administrative aspects.

2. The emphasis on methods has come from the data processing community, and
most of the early developments were specifically for that applications domain.
Various methods were developed (JSD, SA/SD, SADT, PSLJPSA) that were ap-
plicable to the design of applications programs in that domain. These methods
were initially developed in the mid-1970s and have been slowly evolving to incor-
porate new Ideas and to respond to observed weaknesses in practice. One of the
interesting developments over these same years, however, is that very good and
powerful tool sets have been built to simplify the development of routine operational
aspects from this applications domain. Examples of such tool sets are database
management systems, fourth generation languages, and data dictionaries. These
tool sets were not related to the design methods used previously to perform these
functions using operating systems files and programming languages.

3. One of the major drawbacks of using these methods was the burden of tedious
details to be checked by the designer. In actual fact, most designers were rather
cavalier about those details, and just forced things to fit into the programming
stages. The availability of workstations with bit-mapped displays, windowing sys-
tems, and access to laser printers has spawned much automation of the methods.
Automation transfers much of the tedium from the designer to the machine and will
undoubtedly improve the usability of the methods and the quality of the results. A
more detailed discussion of automation is given in [Firth 87].

CMU/SEI-87-TR-41 23

4. From the experience gained in using the methods over a number of projects and a
number of years, the methods are being Improved to remove some of 'heir weak
points. For example, although top-down descriptions may suit readers ipecifi-
cations, they are a poor process for creating a design. Many of the methL. Js now
recommend a middce-out approach to the design process, while maintaining the
top-down descriptio1 of the resulting design.

5. Many of the techniques developed for the data processing community were inap-
propriate for realtime systems, which are more oriented toward "response to
events in the environment" and "periodic processes" than to transactions. Hence
they require an effective way of describing this response and its interactions with
other responses. There has been a tendency toward using methods that include
behavioral descriptions at the specification stage, such as those described below:

* extending established methods to Incorporate state transition diagrams de-
scribing behavior [Ward 86]

* creating new graphical methods incorporating multi-level state
machines [Harel 86]

* using formal mathematical descriptions to describe the behavior [Hoare 85].

6. The concept of Information hiding was introduced in [Parnas 72]. It postulated
that each software module should have direct access only to the bare minimum of
information it needs for execution. Other necessary information should be obtained
by accessing modules that understand the data structures. This led directly to the
so-called A7 method. There was also some related work done on the Smalltalk
environment [Goldberg 84], which used a software paradigm of treating objects as a
data structure and a set of access mechanisms to that structure. These, and the
work done on abstract data types [Aho 83], have led to the object-ork "ft design
methods that are being used (especially with Ada as the target langu. an ex-
ample of which is described in [Booch 83a].

7. The original development methods were exclusively Interested in development is-
sues and had little involvement vwith the software life cycle or other quality
assurance aspects of the software, such as testing and integration. This has
changed dramatically, and there is an emphasis on quality assurance and life-cycle
support included in many emerging methods (DCDS and TAGS).

5.3. Comparison and Classification of Methods

There are numerous surveys [Yau 86], classifications ([Hesse 84], [Kelly 87], [McDonald 85]),
and comparisons ([DoD 821, [Bergland 81], [Floyd 86]) of development methods. Many of these
papers propose classification schemes and evaluation criteria for methods. While we agree with
most of the individual points made in these papers, have used them to develop our own classifi-
cation scheme, and will lean heavily on them in developing our evaluation criteria, we feel that
their proposals are not entirely appropriate for reasons such a• those listed below.

"• There was often no clear distinction between classifying methods (describing what
methods do) and evaluating methods (saying how well they do it). We believe this
distinction is essential.

"* We believe that the classification scheme has to be simple (but meaningful), though
the evaluation criteria should be extensive.

"* The classification scheme often contained a cudous mixture of technical, adminis-

24 CMU/SEI-87-TR-41

A4

trative, and economic judgments. We believe that the classification scheme should
be technical, and administrative and economic considerations should be evaluative.

* In some cases, the distinctions were purely descriptive and would be difficult to use
for comparing the capabilities of different methods. For example, describing one
method as "data flow" and another as "data structure" does little to assist in classi-
fying the methods.

'The reports were often selective in the methods chosen (limited to three to five
methods), and hence there was less need to define general classification and evalu-
ation criteria, since each technique could be probed for Its strengths and
weaknesses individually,

* In general, the papers failed to assist the reader in assessing the usefulness of one
method over another.

CMU/SEI-87-TR-41 25

26 CMU/SEI-87-TR-41

I

6. Automated Support

This chapter describes some of the issues involved with automatic support for the software devel-
opment process. The first subject discussed is tools which directly support the development
methods; this is followed by a description of the capabilities which should be In the environments

supporting these tools.

6.1. Tool Support of Methods

The notion of using tools in the production of software is not new. Editors, assemblers, compil-
ers, linkers, and debuggers are examples of tools that are widely used to aid the soft ire engi-

neering process during the implementation phase of the life cycle. A classification scheme for
such tools is described in a companion report [Firth 87]. However, most design methods can be
directly supported by the tool functions listed below.

1. Most methods provide rules or heuristics for the construction of products and the
relationships between them. Without automated tools, a designer must painstak-
ingly go through all of the products by hand and perform the particular analysis to
ensure that the guidelines are being strictly followed. An automated tool can check
products (either while they are being produced or after completion, as appropriate)
to ensure that the method is being applied correctly. The extent of analysis that
can be performed on products is often tied to the formality of the notation.
"Consistency checking as part of the tool is often limited due to the formality of the
notation. In general, connectivity checks are performed, and identified items are
stored in a so-called data dictionary. Through appropriate naming conventions,
meaning about the identified objects is maintained" [Dart 87].

2. Compilers have been traditionally used to transform textual source objects written
in a programming language into objects that will execute on a particular hardware
and software suite. Ever since compilers have come into common usage, there
have been dreams of extetiding this com'nilor paradigm to an earlier stage in the
design cycle so that a design specificatio.i, vritten in a specification language, can
be tVansformed by a "specification level' cc,.npiler into a programming language.
There are many aspects to this subject, and a great deal of research has been
done, as described in [Partsch 83] and [Balzer 85]. But there have been a limited
number of successes. Although this work has yet to produce commercially viable
products, it does give some objective criteria for evaluating capabilities. The work
raises three different but related questions:

"* How can we best represent a specification?

"• How can we effectively transform that specification into a satisfactory design
and implementation?

"* How can we easily make changes to the specification and derive a new de-
sign and implementation?

The state-of-the-practice is that traisformations from specifications to design representations are

performed by programmers. There has been a substantial body of work done to automate certain
well-defined subsets of the design problem, such as database management systems (DBMS)
[Date 86), form generators, screen painters, and report writers. These are the so-called fourth

generation languages (4GLs), which would be more appropriately termed application generators

CMU/SEI-87-TR-41 27

and are described In [Raghavan 86]. These have been developed both as general tools to be
used with a particular commercial DBMS and as specialized tools associated with specialized
applications.

After products are created by the application of the method, it may be necessary to manipulate
(update or alter) them. With hard copies of the products, most often a new document must be
created to replace an old, insufficient one. An automated tool can make copies of objects, thus
facilitating alteration of an object, while still preserving the original product. Textual or graphical
editors can support fast and efficient alteration of products. Furthermore, it is often helpful for the
designer to view more than one product at a time. Sometimes the designer needs to trace
through or view a group of products that are related in a particular way. An automated tool can
enable the designer to view more than one tool output by windowing techniques which enable
switching back and forth between a number of different references. Searching, sorting, and query
facilities may also be provided to specify related objects.

The process of software development is cyclic in nature - often end products are achieved by
Iterations of the same process. Automated tools aid the task of iterating through a process by
maintaining the results from previous processes, performing transformations, and providing edit-
ing capabilities. Using a tool, the designer can quickly explore different ideas that originated from
the same starting point. In the case of user interfaces, a tool can display aspects of how the
end-product software might behave. Some methods also contain formal executable languages.
The execution of a language usually results in some form of analysis, for example, to point out
discrepancies or incorrectness In the executable specification. The tool may also provide facil-
ities for visible simulation, e.g., animated graphics, which can be a good means for communi-
cating to the user.

6.2. Tool Consistency with Methods

The functicnality and completeness of a tool must be weighed against the impact that its features
have upon the application of the method. Fo!lowing are tool features that can help or hurt a

method:

"* A tool can be used by a wide variety of organizations and users. If a tool can be
tailored to user needs or to a particular user style, the tool has the potential to be
used with more dexterity and at a faster rate than would be otherwise expected.
When a tailorable tool supports a method, it is also important to understand the
ramifications of tailoring, as it may affect the application of the underlying method.
This not only may affect the results of applying the method, but may create consid-
erable disparity among products of different tool users on team projects.

"* The more Intelligent a tool, the more functir -, it will perform without the user having
to directly specify its initiation. In addition, t. , tool should be helpful, anticipating the
user interaction and providing simple and efficient means for the execution of func-
tions that the user requires. However, the tool should not automatically execute
functions that may interfere with the design process and/or the application of the
method or that may hinder experimentation by the user.

" A tool should be predictable. The user who Is already familiar with or trained in the
method the tool supports should not be surprised at any action or output of the tool

28 CMU/SEI.87.TR-41

I

supporting the method. If the tuol has omitted or changed an aspect of the method it
supports, an experienced user of the method can become frustrated or confused,
thus hindering productivity.

* The tool should be flexible and able to support the method enough to guide the user
and ensure that the main concepts of the method are being adhered to. However,the tool should not be so rigid as to force the user to execute steps that mightpossibly be done at a later time or omitted completely.

* The tool should be robust, never generating incorrect transformations or executing a
faulty analysis. In such cases, the tool seriously hinders the designer's work, as
these mistakes are difficult to detect and locate.

6.3. Software Engineering Environment Issues

The environment provides capabilities to the user (designer or specifier in this context) and to the
toolmaker. The environment has many characteristics which support both of these audiences and
increase their productivity and the quality of the software they produce. Some example environ-
ments are listed below.

* The environments provided by specific operating systems such as UNIX and VMS.

* Programming language-dependent environments such as Cedar [Teitelbaum 81],
Smalltalk-80 [Love 83], and structure-oriented environments such as GANDALF
[Habermann 86], and Rational [Archer 86].

o Environments based on extending current operating systems and including database
management concepts to control objects and relationships between objects. Ex-
amples are CAIS [MIL-STD-CAIS 85] and PCTE [Gallo 87].

e Environments which integrate the process of managing software products and the
software engineers producing those products. Examples are DCDS [Alford 85],
DSEE [Leblang 85], and ISTAR [Lehman 85].

It is not the purpose of this report to carefully inspect the issue of software development environ-
ments; however, the interested reader can refer to [Dart 87], [Houghton 87] for more information
on the subject. It is our intention to Identify what characteristics should be contained in the envi-
ronment rather than in the tool set supporting a method. These characteristics are listed below.

1. The environment should provide a set of common user Interfaces which the user
can tailor Individually and which give a common way of operating in the en%,ron-
ment. These should include on-line manuals, "help" capabilities, and, wherever pos-
sible, iconic and graphic support.

2. The environment should allow for portability of tools between environments, and
for the Intoroperablllty of objects produced by those tools between environments
and between tool sets within an environment.

3. The environments should provide object management such that the objects can
be stored and retrieved. The object management facility should support a rich rela-
tionship between objects and provide the user and the tools the capability to browse
through the object base, to que.y the objoct base, and to produce reports about the
contents of the object base. The objects In the object base should be heteroge-
neous, ranging from graphical representations to executable code. The object man-
agement should also include the efficient archiving of the object base, and, in a
distributed system, snould provide location transparency.

CMU/SEI-87-TR.41 29

4. The environment should include configuration management to control versions,

configurations, and releases of the objects.

5. The environment should also have some process management interfacing with
the object and configuration management. Process management involves control-
ling how the software professionals are managed to produce the objects according
to the overall objectives of the organization of which they are part.

6. The environment should gather data concerning the workload to which it is sub-
jected and the work habits of the users (presumably while respecting their privacy).

7. The environment should provide mechanisms for access authorization to objects,
Including executable objects.

30 CMU/SEI-87-TR-41

= ,,

I

7. Using Methods
The software engineering process takes a requirerm ients specification and constructs a satisfac-
tory implementation in the manner previously described. The process is governed and directed
by one or more methods that prescribe how the work is to be done, the stages of the devel-
opment, and the actions appropriate to each stage. Although this process is usually presented as
a smooth and orderly development, in practice the construction of real software rarely ap-
proaches this ideal. For example, if one part of the design seems to involve unusually high risk, it
may be appropriate to build an early prototype of that part or conduct a brief feasibility study or
performance estimation. The design method, however, might require ttat all parts of the design
be brought to a certain stage before any Implementation is done.

Another reason methods cannot always be applied in an ideal way is that the product must
adhere to rigorous performance or size constraints. This may require the developer to be con-
cerned with optimizatior issues at the design stage, while the approved method might require
functional issues to be solved before performance issues can be addressed.

For these and other reasons, a method cannot be used inflexibly and without regard to the overall
circumstances. Nevertheless, most methods do envisage an orderly progression from require-
ment to implementation.

7.1. Analyzing Requirements

The requirement is a description of what the user wants. It excludes many of the details which the
user and supplier will eventually agree upon in the specification and serves as the bas~s for
deriving the specification. Before proceeding to derive the specification, however, some analysis
of the requirements is necessary, such as those listed below.

* identification of novel areas where proof of concept is needed

* identification of high-risk items

* prototyping of user interfaces

a selection of an appropriate set of methods for the remaining stages

* selection of environment and tools to support the development effort

* project planning, budgeting, and scheduling

The developer and user can be helped and guided by a method for requirements analysis that
directs their attention to s lich issues. The method can also facilitate the planning and budgeting
of tasks by identifying work items and dependencies at an early stage.

CMU/SEI-87-TR-41 31

Vt -• .. . • . .

7.2. Deriving the Specification

We presume that the method of specifying the system has been determined previously, and In
this stage we apply this method to the requirements and derive the appropriate specification. The
specification states, as much as possible, what is to be done, not how it is to be done; it should
include the entire requirement rather than the more limited automated portion of the functionality.
The major initial activities to be performed are enumerated below.

1. The specification is often represented in a top-down manner, but it is rarely derived
that way. The recommended ways of proceeding to derive the specification are the
middle-out, object-oriented, information-hiding, event-driven techniques. As ex-
plained in [Parnas 86], the specification can still be represented to the readers in a
top-down manner.

2. Identify reusable components which can be used in the system. These can be
used as the l',sic building blocks around which the system is to be constructed.
They can then be used as constraints on the specification derivation for the rest of
the system. Reuse may also affect the requirements. It is often advantageous to
change an unimportant requirement if doing so will allow for the reuse of available
components.

3. Partition the problem into separable subsystems, each with its own specification
team, and with the rules for interfaces between subsystems well defined.

4. Identify aspects which overlap subsystem boundaries, and separate them into one
of the subsystems, defining interface mechanisms more strictly. This usually in-
volves the process of generalization, is ongoing throughout the specification stage,
and is especially important for some of the fundamental specification issues such
as user interfaces, recovery, fault tolerance, and performance.

5. Develop the specification for each subsystem using the chosen method, remem-
bering to account for the weaknesses of the method.

6. Concentrate on the specification of the previously identified high-risk items, and
constantly review this list, update it, and reassign priorities as necessary.

7. Within each subsystem or portion thereof, specifiers usually start by narrowing the
problem to one they can handle, refining the specification until they have a good
grasp on the details, elaborating on the problem to include some of the ignored
aspects, and continuing with this stepwise refinement until they have a completed
specification. Every so often in this process, they have to remember to review the
interfaces to the other subsystems and to pass judgment on high-risk items under
their control.

Although the specification should be partitioned to make it most easily understandable to the
various audiences, it is easier to maintain traceability between the specification and the design
artifacts If they are partitioned in a similar manner. The method will usually control both the way

the specification is partitioned and the way each component is represented. The form used by a
method to represent systems and components is one of the characteristics that allow us to clas-
sify methods as discussed in Chapter 3.

32 CMU/SEI-87-TR-41

7.3. Identifying the Components and Structure
The specification often models activities to include operations in the environment. The first step in
the design process is to identify the automation boundary for each relevant portion of the system.
The design method helps here by providing guidelines for how this boundary is to be drawn,
procedures for specifying in a more formal manner the interface between the automated system
and its environment, and the abstract behavior of the components external to the automated part.

Some design Issues involve all subsystems and components, and these should be handled first.
In particular, issues of robustness, fault tolerance, resource consumption, and performance in-
volve the system in a holistic manner and cannot be cleanly abstracted into specific components
or specific design stages. The method should help each subsy'stem designer remain aware of
issues that affect all parts of the system.

It is desirable to use as much of the specification level description as possible, especially if it has
been refined to a rather detailed level. There should be interactive tools to allow the designer to
use the specification level to generate the design level, tools to check for consistency between
both levels, and tools to analyze whether the design is likely to satisfy performance requirements.

There Is a need to look at subsystems with differing but similar functionality and to generalize
them if appropriate. It often happens that a specification defines several particular objects or
functions that are similar; these may be specific examples oi a general case, and the design
method should recognize and exploit such generalities. This simplifies the construction of the
system, since seemingly special components can be recognized as instances of a more general
component that might already exist as a reusable artifact. It also helps with subsequent enhance-
ment or maintenance, since the initial implementation offers more generality than originally called
for, with no increase in complexity.

7.4. Implementing the Design

Once the components and their interfaces have been fully specified, it remains to implement
them. Some methods will have so constrained and structured the design process that subse-
quent implementation is almost automatic: the design has been driven toward using a set of
standard primitive components for which generic versions are already available, and toward inter-
faces whose definition can be constructed from a functional description. Implementation is then a
matter of creating specific versions of the components, unit testing them, and Integrating them
into larger assemblies.

Other methods leave open many questions of implementation; for instance, issues of the physical
representation of data types, the exact algorithms for data transducers, and the control hierarchy
of the code components. In these circumstances, other rules must be used to guide the imple-
mentation. The basic problem of mapping real-world requirements into engineered functional
artifacts Is a hard one, one which most methods try to solve by restricting the design space
toward paradigm solutions that are familiar and well understood. This falls when the problem Is
truly one for which only an innovative solution will work, but such problems are perhaps less
common than usually claimed.

CMU/SEI-87-TR-41 33

•- • !•=nnl aumm n o• . m l unllumu nUl~q l ~ ll m m In U~l U l llm mlll I I iiiill~ iL~~llln

Most Implementation methods specify an integration and test strategy. This strategy is usually
designed to allow Independent interface and component testing, bottom-up integration testing,
and final system testing. In some cases, test data and scenarios will have been derived from the
formal specifications.

Finally, many methods contain techniques for improving the performance of a system once built:
optimization techniques. Once a system has been tested and found to function as required,
optimizations reduce its size, cost, or resource consumption without changing its operation. Op-
timizations, however, sometimes make the structure of the system less obvious, for instance, by
combining logically separate objects, propagating physical Information across a logical interface,
or reallocating functional units to balance processing requirements or minimize physical separa-
tions. When this is done, it is crucial that as much traceability as possible be retained through the
transformations.

7.5. Summary

When software developers use a method, some tasks are almost wholly prescribed, others are
guided, and still others are barely addressed. The use of a method must therefore judiciously
combine strict adherence to rules, informed pursuit of guidelines, and tasteful innovation. A
method typically helps by partitioning the problem Into more manageable units, providing appro-
priate views of the system at each stage, and connecting units, views, and stages together in a
manner that preserves traceability, supports analysis, and maintains a sound development
framework.

As discussed previously, the assistance of specific tools can be invaluable in making methods
easier to use, rules easier to follow, and development units easier to manage and control.

34 CMU/SEI-87-TR-41

I,

8. Choosing Methods

In the case of software products, the following must occur: "User needs and constraints must be
determined and explicitly stated; the product must be designed to accommodate Implementors,
users and maintainers; the source code must be carefully implemented and thoroughly tested;
and supporting documents . . . must be maintained" [Fairley 85]. In addition, the engineering
process must deal with real-world constraints that limit the problem solution space and often limit
the approaches that can be taken in the process of transforming the requirements into an accept-
able problem solution.

Software development methods must deal with more than the process and techniques that trans-
late the functional, performance, and other requirements of a software system into an operational
system. They must deal with the environment that exists today in the area of computers and
computing. Software engineers with diverse backgrounds and training are asked to solve prob-
lems with wider ranges of diversity, increasing complexity, and need for reliability. They must use
varying implementation languages on diverse hardware and operating system platforms.

The process of choosing methods is one that must deal with the problems, goals, and situations
alluded to above. Earlier work on methods [McDonald 85] indicates that method evaluation
should be based on a three-step process: classification, evaluation, and selection. While this is
true, it is important to remember the overall context of method selection. Methods are selected to
aid the solution of particular problems in particular situations. The process of selecting methods
in support of the engineering of software must be based on the following activities.

1. Analyzing and understanding (classifying) the characteristics of the engineering
problem to be solved, the nature of the system to be built, the constraints on the
permitted solution, and the process that must be followed.

2. Analyzing and understanding existing methods from various aspects: technical,
process, usage.

3. Selecting a method based on its ability to help the engineers who will use it to deal
with the problem, the solution constraints, and the engineering process.

The rest of this chapter discusses each of these activities in turn and gives an overview of the
issues involved in selecting methods. Emphasis is placed on issues dealing with the engineering
of real-time systems.

8.1. The Engineering Problem
The first area to consider when choosing a problem-solving method is the nature of the problem
to be solved. Engineers who develop systems must deal with the characteristics of the system to
be built as well as constraints that are placed on the software implementation. In addition, they
must follow a development process that Is defined by the organization in which they work. The
following subsections discuss these areas in turn.

1. System characteristics. Software systems are called upon to support a wide
variety of applications, and each system generally comes with its own unique set of

CMU/SEI-87-TR-41 35

NONE".

problems. Individual systems can generally be classified into one of several cate-
gories (transaction processing, business data processing, real-time, etc.) where
members of each category share a common set of characteristics. An understand-
ing of the nature of real-time systems, the characteristics they have in common with
other system types, and the characteristics that set them apart is the first step In
method selectior.

Section 2.1 of this report lists characteristics that are unique to real-time systems.
These characteristics are important to consider when choosing engineeriig meth-
ods for real-time systems in that the characteristics represent especially difficult
problems that have received little support. Effective methods will be those that help
the engineer deal with these characteristics as well as those that are common to all
system types. General characteristics shared with other types of systems have
been described in [McDonald 85].

2. Implementation constraints. The characteristics of real-time systems present the
designers and implementors of typical systems with a set of difficult problems. Un-
fortunately, this is not the only set of problems that must be considered. In many
situations, the solutions to the problems are constrained by the available technology
and by the needs of organizations acquiring, developing, using, and maintaining
systems.

The task of system developers includes the activities of analysis, decomposition,
and understanding of the systems operational requirements. It also includes
analyzing and understanding the solution's constraints to compose a solution that
operates within those constraints. Effective methods must support and preferably
guide developers' efforts to compose an acceptable solution as they work in engi-
neering organizations.

Software solution constraints generally fall Into four major areas. Detailed discus-
sion of many of these characteristics can be found in [Fairley 851.

* Hardware architecture constraints: These are generally imposed by existing
hN 'ware technology as it relates to the special environments in which the
hardware must operate. Real-time systems have severe performance re-
quirements; they need reliability in harsh environments and they need to
sense and effect conditions in the external environment. These needs,
coupled with the state of existing hardware technology, create hardware plat-
forms with special characteristics. Software implemented on these platforms
must account for the special characteristics.

" Software architecture constraints: These are generally imposed by the need
to cost-effectively create and maintain software that operates reliably on the
constrained hardware. In addition, implementations are often constrained to
use "standard" operating systems, language systems, and existing software
components. These standards are often imposed with the goal of reducing
the complexity, development time, and life-cycle rost of the system.

" Integration and testing constraints: These are generally imposed by perfor-
mance requirements, time pressures, logistics, and economics of typica de-
velopment projects. Software Integration and testing are often overlooked in
discussions of development methods, but testing real-time systems Is an
especially difficult task that should be supported by development methods.
Methods used to develop real-time systems must support the process of inte-
gration as well as test case generation, test execution, and analysis of test
results. They should aid in extrapolating the results of tests executed on
hosts, integration systems, and target system simulators to predict nctual
characteristics of the software on the real-target hardware. They ShoL In

36 CMU/SEI-87-TR-41

the developers understand what testing can validly be done on host and inte-
gration systems and what areas cannot be adequately covered using this
approach.

Evolution constraints: Those are typically imposed by the need to operate
the system over long periods of time and to improve the system over its life
cycle. Improvements can take the form of expanded functionality to meet
new needs or the form of an enhanced or modified hardware platform.
Hardware platforms are often modified to take advantage of the character-
istics of newer hardware technology that provides components with charac-
teristics such as greater reliability, decreased weight and size, or lower power
consumption.

3. Process constraints. The software engineering activity occurs in the context of
commercial organizations that build systems for profit. In addition, the systems are
acquired by commercial or government organizations that need to solve their prob-
lems In the most cost-effective manner. The costs to consider are not only the
costs of initially acquiring a system, but also the costs involved with operating and
maintaining t' ýystem over long periods of time.

The need to w, itrol cosL , all its forms places the software engineering process -
and those who conduct it - in a set of managed activities that are frequently re-
viewed and adjusted by those responsible for the cost of system production, system
acquisition, and ownership.

Section 4.5 discusses the engineering process and the process-related constraints
that are placed on the engineering activities. The point to recognize here is that the
most effective methods are those that deal with management issues as well as
technical issues, and do so by understanding the work products needed to support
the technical activities.

Recognizing the above, it is apparent that software developers are not free to create any software
structures, constructs, or mechanisms they can imagine. Each implementation platform
(hardware and operating/language system) forces developers in particular directions. The desire
to reuse existing software components limits the developers even more. The most effective
methods are those that deal with the implementation constraints. The methods should provide
assistance in accurately analyzing and describing the system to be built and should provide a
bridge between the system description and an acceptable implementation architecture. The
method should lead directly into an implementation made up of the entities, constructs, and

mechanisms supported by the implementation platform. The method should assist in defining a
cost-effective testing process. Finally, the method should support the management practices and
engineering process constraints that are generally found in the engineering process. Identifying
and classifying the characteristics of the engineering problem help the organization identify the
needs a method must address.

8.2. Classifying Methods
The previous section outlined the first step ne..essary in choosing methods: characterization of

fie engineering problem to be solved in terms of the nature of the system to be built, the con-
straints placed on the Implementation, and the constraints placed on the engineering process.
The second step in the process of choosing a method deals with the characterization of existing
methods.

CMU/SEI-87-TR-41 37

Chapter 5 outlined methods as they have trach,,i•ally been described. These descriptions and
characterizations are useful for understanding what a method Is and how it addresses particular
problems, but they are not always helpful for deciding which methods apply to particular situa-
tions. Useful characterizations of methods should be made in terms of their relationship to the
characteristics of the system to be built, the constrained solution, and the process to be followed
when using the method.

Earlier work in methods ([Freeman 83] and [McDonald 85]) collectively define five categories of
characteristics to be used in classifying methods: technical, management, economic, usage, and
Ada compatibility. While we agree that these are five useful categories, for the purpose of this
report - a high-level introduction to methods and their selection for use - we have combined
Ada compatibility with technical characteristics, and economic Issues with management issues.
The following three subsections deal with classifying methods In terms of their technical, manage-
ment, and usage characteristics. The process of "characterizing" concerns Itself with what a
method is, what a method ',es, and what issues a method addresses.

1. Technical chi; ,.e .Aics. Chapter 3 discussed various aspects of the devel-
opment process. It outlined three stages of development (specification, design, and
implementation) and three views of the system being developed (behavioral, func-
tional, and structural). This high-level view of the process can be used as a
framework for classifying the technical characteristics of a method.

The characteristics of the engineering problem to be solved are dealt with during
the specification stage. These characteristics can be grouped into the behavioral
and functional views appropriate for the specification stage. These views of the
problem are carried forward through the design to the Implementation stage where
they are represented as the behavioral and functional views of the implementation.
Effective methods are those that allow smooth transition across stages and trace
the functional and behavioral aspects of the problem through to implementation.

The solution constraints are dealt with beginning at the design stage and moving
forward to the implementation stage. At the design stage, the behavioral and func-
tional characteristics of the problem are mapped to the behavioral and functional
characteristics of the solution. The structural view prescribed by an effective meth-
od is one that maps directly to the functional/structural view of the implementation
stage.

2. Management characteristics. As stated in Section 5.3, the most effective meth-
ods are those that deal with management and technical issues. When charac-
terizing a method, it is Important to consider the support it gives to management
issues. The characterization should consider whether and how the method deals
with the typical management and project issues of estimating, planning, review, and
management of work products. This characterization should be related to the
needs and process that exist within the organization. Management practices are
often the most difficult thing to change within an organization. Relating a method to
existing practices will help the selection process by identifying potential changes in
practice required to use the method effectively.

3. Usage characteristics. When classifying methods for comparison and evaluation,
it Is important to capture and describe the characteristics of the method that will
d•ffect Its use by the engineering organization. Usage characteristics include the
conceptual basis for the method, availability of training, and automated support.
Again, this characterization should be related to the organization that will use the
method. Selecting a new method often means a change in engineering practice.

38 CMU/SEI-87-TR-41

. , • . *" ' , hi : . .

I

The classification and selection process should help the organization understand
the magnitude of the change, and help engineers to make the change.

Characterizing existing methods Is, then, the second step in the selection process. The classifi-
cation should be done in a manner that allows those responsible for method selection and use to
relate the methods to the needs of the organization as it develops specific systems.

8.3. Selecting a Method

The previous sections discussed the first two steps of the selection process: identifying the needs
of the organization and classifying existing methods in terms of technical, management, and
usage characteristics. These first steps set the stage for the last by helping those responsible for
the selection come to grips with the nature of the problem they are trying to solve and the poten-
tial of specific methods to deal with the problem.

The final step is to select a method, though this is not usually a simple procedure. The needs
analysis performed as the first step of the selection process will generally produce a set of needs
that are not completely covered by any method. The process of selection is one that finds the
best solution rather than a complete solution. The following general activities should be per-
formed in making the selectio-

1. Rank the Issues. TI first step of the selection process results In a set of issues
that must be considered by those producing a particular system. This set of issues
must be ranked by the engineering organization to determine its real needs. The
ranking should be based on the importance of each issue to the particular organi-
zation and should consider questions such as: How critical is resolution of the
issue to the success of the engineering project? How difficult will the issue be to
resolve? How much experienca and success has the organization had in dealing
with similar problems in the past? The ranking should identify problems that seem
especially difficult to solve or those that will require the organization to use unfa-
miliar techniques. This ranked list should cover both technical and management
issues. Once created, 4t can serve as the basis for the step described below.

2. Identify key discriminators. The ranked list of issues can be used to define the
characteristics of a method that will be effective in dealing with the engineering
problem. The ra .ed list should be used to define two classes of features: essen-
tial features and desirable features. While the list of desirable features will probably
contain items that address all the issues, it is important io remember that one is
unlikely to find any method that will do this. Desirable features are those where
there is room for compromise - those that can possibly be absent or only partially
effective. Essential features, on the other hand, are those where there is no room
for compromise. This list of key discriminating factors can be used to quickly weed
out candidate methods.

3. Apply to methods. Once the key discriminators are identified, they should be
applied to the classified methods to determine which methods have potential bene-
fit. The result of this process will usually be a shorter list of candidate methods.
The candidates are those that possess all essential features - features that deal
effectively with the critical issues defined in the ranking process. Further evaluation
should consider how well each method covers the desirable features. This is gen-
erally a subjective process that must deal with issues not easily measured and do
so in a way that considers the culture of the engineering organization.

CMU/SEI-87-TR-41 39

4. Determine undesirable features. During the final steps of the selection process, it
is important to consider the undesirable features of the candidate methods. Meth-
ods have been developed to deal with the complexities of engineering activities,
and each handles complexity in its own way. Rigorous, formal specification meth-
ods, for example, lead to problem statements that are complete and consistent.
These methods, however, are often difficult to learn and cumbersome to use. Cer-
tain other graphically based methods, on the other hand, are relatively easy to use
and lead to problem descriptions that can be understood and reviewed by wide
audiences. These methods, however, often lack the rigor and formal basis required
to support detailed, thorough analysis for a variety of conditions.

For each method evaluated, it is important to determine the method's undesirable
features. What issues does the method not deal with? What are the negative
consequences of using the method to solve a particular problem? What costs are
associated with acquiring and adopting the method?

The set of activities described above brings those responsible for method selection to a decision

point. From the preceding discussion, it should be apparent that the decision is complicated and

largely subjective. It involves a number of tiddeoffs, for example, rigor versus ease of use,

management support versus minimal engineering workload. In many cases, the tradeoff deci-

sions cannot be supported with well-defined, objective measurement criteria since these metrics

do not yet exist.

The final decision is best attained by thoroughly analyzing and understanding the engineering

problem, the constrained solution, and the candidate methods. This understanding, used by

those experienced in the development of real-time systems, supports the subjective decision-
making process that must occur. The decision-making process should identify the best method

for the problem. It should also identify those issues the method does not deal with and the costs
involved in adopting the method. The data collected and the understanding achieved during the

selection process can be used to support the successful adoption of the method selected.

40 CMU/SEI-87.TR-41

I
I

Appendix A: Key Methods - Acronym Descriptions and
References

Method Brief Description References

A7 A7 Methodology [i-arnas 86]

DARTS Design Approach for Real-Time Systems [Gomaa 86]

DCDS Distributed Computing Design System [Alford 851

HIPO Hierarchy, plus Input, Process, Output [Stay 76]

HOS Higher Order Software [Hamilton 76]

JSD Jackson Structured Design [Cameron 83]
[Jackson 75]

MASCOT Modular Approach to Software [Bate 86]
Construction Operation and Test [Booer 82]

[Jackson 84]
[Simpson 84]

QOD Object-Oriented Design [Booch 83b]
[Buzzard 85]
[Cox 84]

PAISLey Process-Oriented, Applicative, [Zave 86]
and Interpretable Specification Language

PAMELA Process Abstraction Method for [Cherry 87]
Embedded Large Applications

PSL/PSA Problem Statement Language/ [Teichrow 77]
Problem Statement Analyzer

SADT Structured Analysis and Design Technique [Ross 77]
[Connor 801
[Ross 81]

SARA System Architect's Apprentice [Estrin 86]

SA/SD/RT Structured Analysis/ [DeMarco 78]
Structured Design/ [Ward 85]
Real-Time

SREM Software Requirements Engineering Methods [Alford 85]
[Hoffman 81]
[Scheffer 85]

Statecharts Statecharts [Harel 86]

VDM Vienna Development Method [Bjorner 83]
[Jones 86]

Warnier Orr Warnier Orr Diagrams [Warnier 76]

CMU/SEI-87-TR-41 41

2, rtt,

References

[Aho 83] Aho, Alfred V.; Hopcroft, J. E.; and Uliman, J. D.
Data Structures and Algorithms.
Addison-Wesley, Reading, MA, 1983.

[Alford 85] Alford, Mack.
SREM at the Age of Eight: The Distributed Computing Design System.
Computer 18(4):36-46, April, 1985.

[Archer 86] Archer, J. E., and Devlin, M. T.
Rational's Experience Using Ada for Very Large Systems.
In Proceedings of First International Conference on Ada Programming Lan-

guage Applications for the NASA Space Station, pages B.2.5.1-12. NASA,
June, 1986.

[Balzer 85] Balzer, R.
A 15 Year Perspective on Automatic Programming.
IEEE Transactions on Software Engineering SE-i 1 (11), November, 1985.

[Bate 861 Bate, G.
MASCOT Overview.
IEEE, London, January, 1986.

[Bergland 81] Bergland, G.D.
A Guided Tour of Program Design Methodologies.
Computer 14(10):13-37, October, 1981.

[Bjorner 82] Bjorner, D., and Jones, C. B.
Formal Specification and Software Development.
Prentice/Hall International, London, England, 1982.

[Bjorner 83] Bjorner, D., and Prehn, S.
Software Engineering Aspects of VDM, The Vienna Development Method.
North-Holland, Amsterdam, Netherlands, "'

[Boehm 86] Boehm, B. W.
A Spiral Model of Software Development and Enhancement.
ACM SIGSOFT Software Engineering Notes 11(4), August, 1986.

[Booch 83a] Freeman, P., and Wasserman, A. (editors).
Object-Oriented Design.
In Tutorial: Software Design Techniques, IEEE Computer Society Press,

Washington, DC, 1983.

[Booch 83b] Booch, Grady.
Software Engineering with Ada.
Benjamin/Cummings, Menlo Park, CA, 1983.

[Booer 821 Booer, A. K., and John, W. T.
MASCOT Real-Time Software Development Using the Context-' n.
Colloquium on Development Environments for Microprocessor a.,Oms, May,

1982.

[Brooks 87] Brooks, F. P.
The Silver Bullet, Essence and Accidents of Software Engineering.
IEEE Computer 20(4), April, 1987.

42 CMU/SEI-87-TR-41

I

[Buzzard 85] Buzzard, G. D., and Mudge, T. N.
Object-Based Computing and the Ada Language.
Computer 18(3):11-19, March, 1985.

[Cameron 83] Cameron, J.
Tutorial: JSP and JSD: The Jackson Approach to Software Development.
IEEE Computer Society Press, Washington, DC, 1983.

[Cherry 87] George W. Cherry.
Introduction to PAL and Pamela II (Process Abstraction Language and Proc-

ess Abstraction Method for Embedded Large Applicdtions).
P.O. Box 2429, Reston, VA 22090, 1987.

[Connor 80] Connor, Michael F.
Structured Analysis and Design Technique (SADT) Introduction.
IEEE Engineering Management Conference Record :138-143, May, 1980.

[Cox 84] Cox, B. J.
Message/Object Programming: An Evolutionary Change in Programming

Technology.
IEEE Software 1 (1):50-62, January, 1984.

[Dart 87] Dart, Susan A.; Ellison, Robert J.; Feller, Peter H.; and Habermann, N. A.
Trends in Software Development Environments.
Carnegie Mellon University, Pittsburgh, PA.
May, 1987

[Date 86] IBM Editorial Board (editor).
An Introduction to Database Systems.
Addison-Wesley, Menlo Park, CA, 1986.

[DeMarco 781 DeMarco, Tom.
Structured Analysis and System Specification.
Yourdon, Inc., New York, 1978.

[DoD 82] Ada Joint Program Office.
Ada Methodologies: Concepts and Requirements.
Technical Report, Department of Defense, November, 1982.

[Estrin 86] Estrin, G.; Fenchel, R.S.; Razouk, R.R.; and Vernon, M.K.
SARA (System Architects Apprentice): Modeling, Analysis, and Simulation

Support for Design of Concurrent Systems.
IEEE Transactions Software Engineering SE-1 2(2):293-311, February, 1986.

[Fairley 85] Fairley, Richard E.
Software Engineering Concepts.
McGraw Hill, New York, 1985.

[Firesmith 87] Firesmith, Donald G.
Software Development Process.
Defense Science and Electronics 6(7):56-59, July, 1987.

[Firth 87] Firth, Robert; Mosley, Vicky; Pethia, Richard; Roberts, Lauren; and Wood, Wil-
liam.
A Guide to the Classification and Assessment of Software Engineering Tools
Carnegie Mellon University, Pittsburgh, PA, 1987.

CMU/SEI-87-TR-41 43

[Floyd 86] Floyd, Christlane.
A Comparative Evaluation of System Development Methods.
In Olle, T.W.; Sol, H. G.; and Verriijn-Stuart, A. A. (editors), Information Sys-

tems Design Methodologies: Improving the Practice. North-Holland, 1986.

[Freeman 83] Freeman, P., and Wasserman, A. I.
Ada Methodologies: Concepts and Requirements.
ACM SIGSOFI Software Engineering Notes, 1983.

[Gallo 87] Gallo, F.; Minot, R.; and Thomas, I.
The Object Management System of PCTE as a Software Engineering Data-

base Management System.
In Sewond ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

Practical Software Development Environments, pages 12-15. ACM, Janu-
ary, 1987.

[Goldberg 84] Goldberg, Adele.
Smalltalk-80, The Interactive Programming Enviro. -ment.
Addison-Wesley, Reading, MA, 1984.

[Gomaa 86] Gomaa, H.

Software Development of Real-Time Systems.
Communications ACM 29(7):657-8, July, 1986.

[Guttag 85] Guttag, J. V.; Homing, J. J.; and Wing, J. M.
Larch in Five Easy Pieces.
Technical Report, Digital Systems Research Center, July, 1985.

[Habermann 86] Habermann, A. N., and Notkin, D.
Gandalf: Software Development Environments,
IEEE Transactions on Software Engineering SE-1 2(12):1117-1127, December,

1986.

[Hamilton 76] Hamilton, M., and Zeldin, S.
Higher Order Software - A Methodology for Defining Software.
IEEE Transactions on Software Engineering SE-2(1):9-32, 1976.

[Harel 66] Harel, David.
Statecharts: A Visual Approach to Complex Systems.
Concurrent Systems, February, 1986.

[Hayes 87] Hayes, I.
Specification Case Studies.
Prentice/Hall International, London, England, 1987.

[Hesse 84] Hesse, Wolfgang.
A Systematics of Software Engineering: Structure, Terminology and Classifi-

cation of Techniques.
NATO ASI Series: Piogram Transformation and Programming Environments,

Vol F8.
1984

[Hoare 85] Hoare, C. A. R.
Communicating Sequential Processes.
Prentice/Hall International, London, England, 1985.

44 CMU/SEI-87-TR-41

I
I

[Hoffman 81] Hoffman, R. H.; Loshbough, R. P.; and Smith, R. W.
SREM: Software Requirements Engineering Methodology and the Require-

ments Engineering and Validation System (REVS).
In Proceedings of the NBS/IEEE/ACM Software Tool Fair, pages 111-16.

IEEE, ACM, NBS, Washington, DC, San Diego, CA, March, 1981.

[Houghton 87] Houghton, Raymond C., and Wallace, D. R.
Characteristics and Functions of Softwave Engineering Environments: An

Overview.
ACM SIFSOFT Software Engineering Notes :64-84, January, 1987.

[Jackson 75] Jackson, Michael A.
Principles of Program Design.
Academic Press, New York, 1975.

[Jackson 84] Jackson, K.
MASCOT.
IEEE Colloquium on MASCOT 3 (Digest No. 113), December, 1984.

[Jones 86] Jones, C. B.
Systematic Software Development Using VDM.
Prentice-Hall, Englewood Cliffs, NJ, 1986.

[Kelly 87] Kelly, John C.
A Comparison of Four Design Methods for Real-Time Systems.
Research paper supported by a NASNASEE fellowship at JPL, CA.
1987

[Leblang 85] Leblang, D. B., and McLean, G. B.
Configuration Management for Large-Scale Software Development.
In GTE Workshop on Software Engineering Environments for Programming in

the Large. June, 1985.

[Lehman 85] Lehman, M. M.
Approach to a Disciplined Development Process -The ISTAR Integrated Proj-

ect Support Environment.
Imperial Software Technology, Ltd.
November, 1985

[Leveson 83] Leveson, N. G., and Harvey, P. R.
Analyzing Software Safety.
IEEE Transactions on Software Engineering SE-9(5):569-579, September,

1983.

[Love 83] Love, Tom.
Experiences with Smalltalk-80 for Application Development.
Proceedings of SoftFair (IEEE Order No. 83CH1919-0), July, 1983.

[McDonald 85] McDonald, Catherine W.; Riddle, William; and Youngblut, Christine.
STARS Methodology Area Summary - Vol II: Preliminary Views on the Soft-

ware Life Cycle and Methodology Selection.
Prepared for Office of the Undersecretary of Defense for Research and Engi-

neering, IDA Paper P-1814.
March, 1985

[MIL-STD-CAIS 85]
Ada Joint Program Office.
Military Standard Common APSE Interface Set.
Ada Joint Program Office, Washington, DC, 1985.

CMU/SEI-87-TR-41 45

[Parnas 72] Parnas, D. L.
On the Criteria To Be Used In Decomposing Systems Into Modules.
Communications ACM 15(12):1053-1058, December, 1972.

[Parnas 86] Parnas, D. L., and Clements, P. C.
A Rational Design Process: How and Why To Fake It.
IEEE Transactions on Software Engineering SE-1 2(2), Febnjary, 1986.

[Partsch 83] Partsch, H., and Steingruggen, R.
Program Transformation Systems.
ACM Computing Surveys 15(3), September, 1983.

[Pave Pillar 85] AFWAL/AAAS-1.
Architecture Specification for Pave Pillar Avionics, SPA 900-99001.
June, 1985

[Raghavan 86] Raghavan, Sridhar, A., and Chand, Donald, R.
Applications Generators and Fourth Generation Languages.
Technical Report TR-86-02, Wang Institute, February, 1986.

[Floss 77] Ross, DT., and Schoman, K.E.
Structured Analysis for Requirements Definition.
IEEE Transactions Software Engineering SE-3(1):69-84, January, 1977.

[Ross 81] Bergland, G. D., and Gordon, R. D. (editors).
Tutorial on Software Design Techniques: Structured Analysis (SA): A Lan-

guage for Communicating Ideas.
IEEE Computer Society Press, Los Angeles, CA, 1981.

(Royce 70] Royce, W. W.
Managing the Development of Large Software Systems: Concept and Tech-

nique.
In Proceedings of the 9th International Conference on Software Engineering.

August, 1970.

[Scheffer 85] Scheffer, Paul A., and Stone, Albert H. Ill.
A Case Study of SREM.
Computer 18(4):47-54, April, 1985.

[Simpson 84] Simpson, H. R.
MASCOT 3 (Real-Time Software Design Methodology).
IEEE Colloquium on MASCOT 3 (Digest No. 113), December, 1984.

[Smith 85] Smith, Douglas R.; Kotik, G. B.; and Westfold, S. J.
Research on Knowledge-Based Software Environments at Kestrel Institute.
IEEE Transactions on Software Engineering SE-11 (11), November, 1985.

[Stay 76] Stay, J F.
HIPO and Integrated Program Design.
IBM Syst Journal 15(2):143-154, 1976.

[Teichrow 77] Teichrow, Daniel.
PSL/PSA: A Computer-Aided Technique for Structured Documentation and

Analysis of Information Processing Systems.
Transaction Software Engineefing SE-3(1), January, 1977.

[Teitelbaum 81] Teitelbaum, T.; Reps, T.; and Horwltz, S.
The Why and Wherefore of the Cornell Program Synthesizer.
IEEE Tutorial on Software Development Environments :64-72, 1981.

46 CMU/SEI-87-TR-41

• ,. • .•'1

II
I4

[Ward 85] Ward, Paul T., and Mellor, Stephen J.
Structured Development for Real-Time Systems, Vol I: Introduction & Tools.
Yourdon Press, New York, 1985.

[Ward 86] Ward, Paul T.
The Transformation Schema: An Extension of the Data Flow Diagram to Rep-

resent Control and Timing.
IEEE Transactions on Software Engineering SE-1 2(2), February, 1986.

[Warnier 76] Warnier, ,.D.
Logical Construction of Programs.
VanNostrand Reinhold, New York, 1976.

[Yau 86] Yau, Stephen S., and Tsai, Jeffery J. P.
A Survey of Software Design Techniques.
IEEE Transactions on Software Engineering SE-12(6):713-721, June, 1986.

[Zave 861 Zave, Pamela.
Salient Features of an Executable Specification Language and Its Environ-

ment.
IEEE Transactions on Software Engineering, February, 1986.

CMU/SEI-87-TR-41 47

.- n--I

48 CMU/SEI-87-TR-41

r UNLIMITED. ITNC.T.A qTFT rI
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

10. RtPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-87-TR-41 ESD-TR--87-204

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(Itcpplicable)

SOFTWARE ENGINEERING INSTITUTE SEI SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

CARNEGIE MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

So. NAME OF FUNDING/SPONSORING
1
6b. OFFICE SYMBOL 9. .ROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (It applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
CANGEMLO NVRIYELEMENT NO. NO. NO. NO.

SOFTWARE ENGINEERING INSTITUTE JPO

PTTTSBURGH, PA 15213 N/A N/A N/A
11. TITLE (Include Security Classification)

A CLASSIFICATION SCHEME FOR SOFTWARE DEVELOP ENT METHODS
12. PERSONAL AUTHOR(S)

FIRTH, WOOD, PETHIA, ROBERTS, MOSLEY, DOLCE
13.L TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

FINAL iFROM TO NOVEMBER R7 58
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Con(inue on rueivse it necesary and identify by block• number)

FIELD GROUP SUB GR SOFTWARE ENGINEERING, SOFTWARE DEVELOPMENT, REAL-TIME

I9. ABSTRACT lContinue on reverse if necestary and ident if' by block number)

SOFTWARE DEVELOPMENT METHODS ARE USED TO ASSIST WITH THE PROCESS OF DESIGNING SOFTWARE
FOR REAL-TIME SYSTEMS. MANY SUCH METHODS HAVE COME INTO PRACTICE OVER THE LAST
DECADE, AND NEW METHODS ARE EMERGING. THESE NFW METHODS ARE MORE POWERFUL THAN
THE OLD ONES, ESPECIALLY WITH REGARD TO REAL-TIME ASPECTS OF THE SOFTWARE. THIS
REPORT DESCRIBES A CLASSIFICATION SCHEME FOR SOFTWARE DEVELOPMENT METHODS, INCLUDES
DESCRIPTIONS OF THE MAJOR CHARACTERISTICS OF SUCH METHODS, AND CONTAINS SOME WORDS
OF ADVICE ON CHOOSING AND APPLYING SUCH METHODS.

20. DISTRIBUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED]a SAME AS RPY. 0 DTiC USERS U UNCLASSIFIED, UNI,MI' r--

22a. NAME OF RESPONSIBLE INDIVIOUL 22b TELEPHONE NUMBER - ... OFFICE SYMBOL

(Include Arta Code,KARL SHINGLER (412) 268-7630 SEI JPO

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNLIMITED_ UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGC

